縮小均衡のファッション業界を救うのはIT+ビッグデータだ。

まあ、いろんなところでファッション業界は今や縮小均衡の典型みたいに言われている。事実そうなんだろうが、どこにやられているのかというと、ネット・SNSの浸透でファッションにまでお金を出すことがなくなってきたのや、ECの浸透でリアル店舗が一気にその存在意義を問われだした、ほかの業界では革新的なベンチャーが登場しているのだが、この業界にはそういうことがなかなかむつかしいということになるんだろうと思う。

 

まあ、それは今後もどんどん進んでいくとして、この閉塞感のあるファッション業界をどう盛り上げるのかというと、まあ、答えはとことんIT化してビッグデータをこねくり回そうということになるのだと思う。

 

なぜ、縮小近郊になっても解決できなったのかの問題の原因は、やはり売り上げの予測が立てにくくその結果売れない在庫がいつも相当量出来るということなんだろうと思う。その根本原因は、日ごろから予測しようと流通工学みたいなものを創らなかったことや、直接情報をつかめるユーザーデータの分析方法がわからなかったということなんだと思う。いくら社内データやPOSデータを分析しても、買い上げ率が悪い中でもともとの精度が悪いということに尽きるのだと思う。

 

さらに、販促方法が今や撃滅種の雑誌やマスコミを使ってなんでそれが今の顧客層に全く届いていないということも大きな原因だろう。とにかく社内外のトップ人の頭の中が今までの経験値に甘えていたということなのだ。

 

で、IT化とビッグデータ活用の登場なんだが、ビッグデータはまず手始めに最も簡単な検索データの分析からでも大きな進歩が可能だと思う。ファッションブランドだとして、自社のブランドの競合やその1レベル上や下のブランドの検索傾向を分析し、販売拠点の商業施設全体の検索傾向を分析し、さらに社内のデータを分析し、マージすることで多変量解析ができると思う。これだけでも今までベテランでも全く分からなかったことが山ほど発見できるだろうし、最初にどういった対策を打つことができるのかという案も山ほど出すことができると思う。まあ、今までの右脳系の人がいくら集まっても全く無理かもしれないが、データマイニングが得意な人材をそろえばそこら辺のマーケッターやコンサルよりも相当精度の高いことができると思う。

 

今までは何か声のでかい人やトップ人がその何の根拠もない意見で決めていた傾向やどうでもいい分析をやっているようなコンサルやマーケッターの声を一切聞く必要もなく全く排除し、100%データで分析した方が少なくても今よりはレベルの違う商品政策も売り場運用政策も販促なども可能だと思う。しかも費用対効果は劇的に変わるということでだ。

 

なんてことはどうだろうかね????無理か????

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です